
The Hidden Costs And Benefits Of Open Source

KAMAILIO SIP & WEBRTC SERVER

www.asipto.com - Daniel-Constantin Mierla - @miconda - Co-Founder Kamailio Project - www.kamailio.org

2024

An Over 20 Years Journey In The Open Source Space

▸ Originally from Romania, living in Berlin, Germany

▸ Computer science software engineer - Polytechnics University Bucharest (2001)

▸ Researcher in RTC at Fraunhofer Fokus Institute, Berlin, Germany (2002-2005)

▸ Co-founder, main coordinator and lead developer of Kamailio, an open source
SIP Server

▸ Professional consultancy for SIP, VoIP, Kamailio and all RTC at asipto.com

▸ Involved in open source real time communications since 2002

▸ Working with open standard protocols, mainly from IETF, GSMA/3GPP/ITU/ETSI

▸ C software developer - mainly VoIP server side infrastructure

▸ Co-organizer of Kamailio World Conference, FOSDEM RTC DevRoom

▸ Speaking and promoting OSS RTC at world wide events

2002 Jun 2005 Jul 2008 Aug 2008 Nov 2008

SIP Express Router (SER)

OpenSER Kamailio

Other Forks...

Release of two applications - same source code:
 Kamailio - SER

Oct 2009Jan 2010

v3.0.0

Integration
Completed

v1.5.0

Sep 2011Sep 2001

First
Line
Of

Code

Open
Source

GPL

FhG
Fokus

Institute

rename

Awarded
Best Open

Source
Networking

Software
2009
By

InfoWorld

10
Years

Jun 2012

v3.3.0

ITSPA
UK

Award

Mar 2013

v4.0.0

Kamailio

v5.0.0

Mar 2017

……….

v5.8.0

March 2024

Let's Speak SIP = E Kama'ilio SIP

……….

15
Years

Sep 2016

………. ……….

……….

……….……….

Release of one application:
 Kamailio

fork

v5.1.x
v5.2.x
v5.3.x
v5.4.x
v5.5.x
v5.6.x
V5.7.x

v4.1.x
v4.2.x
v4.3.x
v4.4.x

Open Source SIP (IETF RFC3261) Signaling Server implementation,
developed since 2001

Can be used for VoIP (Voice, Video, VoNR/VoLTE/IMS, SIP-I/SIP-T),
Instant Messaging, SMS, Presence

Diameter, SQL and NoSQL backends

load balancing, least cost routing, security gateways

Designed for modularity, flexibility and scalability

used by large telecoms, mobile operators and OTT services world wide

thousands of call setups per second

hundred thousands of connected phones per instance

IPv6/IPv4 - UDP/TCP/TLS/SCTP/WebSocket - asynchronous routing

Classic SIP - WebRTC gateway using Kamailio + RTPEngine

Embedded interpreters: Lua, Python, JavaScript, Ruby, Squirrel, Perl, .Net

About 250 modules (extensions)

KAMAILIO SIP SERVER - SIGNALING

https://www.kamailio.org

Authentication

Authorization

Accounting

Registration

Location

Least cost routing

Load balancing

Encryption

Diameter

IMS Extensions

HTTP (Rest) API client-server
JSON, XML, JWT
WebSocket, WebRTC (with RTPEngine)
…

KAMAILIO - SIP ROUTING TOOLKIT - BUILDING BLOCKS

COMMON USES CASES

authentication, registration and user location

voice, video, instant messaging and presence

NAT traversal, RTP relaying, webrtc

SIP security firewall

DDoS mitigation, anti-fraud

integration with social networking

SIPSIP

multimedia

SIP

home server remote server

caller callee

media servers - gateways

load balancer

least cost routing

transport layer gateway

topology hiding

carriers interconnect

Support since 2012

the first open source SIP server implementing it

Kamailio - signalling handling

websocket (+ xhttp, tls) module

rtpengine (+ nathelper) module

RTPEngine - media handling

ICE, encryption-decryption, transcoding

JavaScript SIP libraries

JsSIP, SIP.js, SIPML5, …

Use cases

Browser to browser calling

WebRTC to classic SIP/VoIP gateway

KAMAILIO IN THE WEBRTC WORLD

Kamailio for SIP signalling routing

RTPEngine for RTP-SRTP encryption-decryption

https://github.com/sipwise/rtpengine

KAMAILIO IN THE WEBRTC WORLD

https://gist.github.com/jesusprubio/4066845

http://www.kamailio.org/docs/modules/stable/modules/websocket.html

https://github.com/caruizdiaz/kamailio-ws

https://github.com/havfo/WEBRTC-to-SIP

http://www.kamailio.org/docs/modules/stable/modules/rtpengine.html

SECSIPIDX PROJECT - STIR/SHAKEN

https://github.com/asipto/secsipidx
Components:

•secsipid: Go library - common functions
•csecsipid: C library - wrapper code to build

dynamic or static library and .h include files
•secsipidx: main.go - CLI tool and HTTP API

server for checking or building SIP identity

STIR (Secure Telephony Identity Revisited)
 - a series of IETF RFCs: RFC8224, 8225, 8226
 - https://tools.ietf.org/html/rfc8224

SHAKEN (Secure Handling of Asserted
information using toKENs)
 - RFC8588 - https://tools.ietf.org/html/rfc8588

They defines how telephone service providers
should work together to ensure calling numbers
have not been spoofed.

SIPEXER - SIP CLI TOOL WITH WEBSOCKET SUPPORT

https://github.com/miconda/sipexer

SIPEXER - SIP CLI TOOL WITH WEBSOCKET SUPPORT

Among features:

send OPTIONS request (quick SIP ping to check if server is alive)

do registration and un-registration with customized expires value and contact URI

authentication with plain or HA1 passwords

set custom SIP headers

template system for building SIP requests

fields in the templates can be set via command line parameters or a JSON file

variables for setting field values (e.g., random number, data, time, environment variables, uuid, random string, …)

simulate SIP calls at signaling layer (INVITE-wait-BYE)

option for late-offer SDP

respond to requests coming during SIP calls (e.g., OPTIONS keepalives)

send instant messages with SIP MESSAGE requests

color output mode for easier troubleshooting

support for many transport layers: IPv4 and IPv6, UDP, TCP, TLS and WebSocket (for WebRTC)

send SIP requests of any type (e.g., INFO, SUBSCRIBE, NOTIFY, …

wsctl - https://github.com/miconda/wsctl

OPEN SOURCE

COSTS AND BENEFITS

(OBVIOUS OR HIDDEN)

C programming language

very good performance

very good portability*

across Unix/Linux/BSD systems

constrained by dependencies

hard to attract new contributors

syntax allows complex statements

hard to understand and maintain

PROGRAMMING LANGUAGE AND DEPENDENCIES

using external libraries

rapid development

reuse of knowledge and resources

one can’t implement everything

can incur significant overhead

complexity and break of API: libssl

no longer properly maintained: libev

use of standards

compatibility and interworking

standardisation groups collide

xml namespace

http2 - http11+upgrade vs. direct http2

self-brewed solutions became a pain over the time

the heart and spirit of open source

growing the set of feature and user base

good impact on quality of the project

mix of styles

design and architecture of the components

coding styles - names for functions and variables

different levels of experience

hacks and workarounds

claims of full ownership even after small contributions

friendly relations might not last forever

CONTRIBUTIONS AND CONTRIBUTORS

contributions guidelines

coherent format and descriptive
commit message

formatting the code with same tool

small commits

easier to understand

modularity

do not impact everything

License GPLv2+

Good protection of freedom and openness

well … not much for cloud services and SaaS

Restrictive on library linking

Only with GPL-compatible libraries

Can prevent packaging in GPL-strict
distributions (e.g., Debian)

Restrictive on business models

No per-license selling

No protection of (smart/useful) ideas and
solutions

well, that’s why it is called open

competition copies (steals :-)) the good things
or they inspire from them for a fast track
implementation

components, APIs, bug fixes

LICENSES AND COPYRIGHTS

BSD* for contributions to common
components or other main license

AGPL, SSPL, …

find a way to retain copyright on main
components

contributing license agreement

patents

but we all hate them

soft forks - aka cloning git repository of a project to the personal account

how pull requests can be done by external contributors

can foster development of new components and features

bug fixes and testing

can take some resources to track and merge back

hard forks - cloning, renaming and diverging

they are mostly noise

every little different thing is made up to look as something important

they diverge anyhow, not worthing anything after a while

better to ignore, follow the need of your project and community

PROJECT FORKING

where all the fun is, and the pain

learning a lot from others on different topics

source of good references

meeting people when travelling and making friends

aggressive and sometime abusive attitude

blaming the developers, even everything is free

treating as being their employees

not following guidelines

inexact description of reports

not keeping the promises

e.g., help me and I will make documentation for it

keep focus on fair users and contributors, and ignore the intruders

COMMUNITY

very useful community meetings and conferences

sharing experiences

development workshops

boost collaboration and speed up evolution

free events can be disappointing

many register and do not show up

charge a fee, which can be returned on site as a gift, drinks, meals

others feel entitled of ownership and special benefits

organisers should accept their instructions and rules

participate for free or at lower registration fee

because all runs smooth, they do not think of the risks and work behind

make clear the rules of participation, the organiser and the scope

EVENTS

the ways the community interacts and can collaborate

many options for the same scope

mailing lists, forums, chat rooms

trackers or support portals

can distract activity

hard to track on topics and purpose

maintenance costs

clearly define the scope for each channel

bug reports and tracking development

how-to use discussions

business relations

COMMUNICATIONS CHANNELS

Ensure minimum coherence and acceptance testing

Github actions are very useful

Docker, Jenkins

Detect simple or involuntary mistakes

Lift burden from developers

Community can play a key role

Installation, configuration and maintenance costs

Ownership and privacy issues

Best testing is in production

TESTING & CI/CD

performance (vertical scalability) does not sell as much as expected

good for marketing, but not as good for business

stability is very important

easiness to use can be relevant, but can impact flexibility

responsiveness matters

critical issues

community discussions

clear release policies

hard to please everyone

from when-is-ready to LTS or rolling releases

everything takes time and resources

it does not pay back in many cases

QUALITY OF THE SOFTWARE AND PROJECT

open source is a channel for marketing

sometimes overrated

free drinks, dinners and some donations

boost of carrier opportunities

several directions: development, support, training, SaaS, CPaaS

OSS makes it easy to get distracted and lost in irrelevant matters

negative impact on family and social life

do not bet the life on donations

support revenue might not be as much as expected

or not desired

sponsorships can put pressure on developers

fairness of others might not be as developers expect

sme: identify a (niche) business model based on your OSS project

think big: investors and adequate sales and management teams

REVENUE - DONATIONS

OSS LIFE - END OF THE DAY - SOMETIMES

OSS LIFE - END OF THE DAY

THANK YOU!
Daniel-Constantin Mierla

Co-Founder Kamailio Project
@miconda
asipto.com

Hoping For Another Berlin Edition In 2025
www.kamailioworld.com

