
Distributed Presence
Kamailio + JSON

VoIPxSWITCH

About me
- Emmanuel Schmidbauer
- VoIP Engineer at TextNow
- ~10 years experience in SIP (still learning…)
- Kamailio Developer

● presence modules
● distributed presence design

What I’m going to talk about

What I’m NOT going to talk about

● Not going into detail of SIP request methods
● Not going to talk about anything RFC specific

● Busy Lamp Field (BLF)
● Message Waiting Indicator (MWI)
● Shared Call Appearance (SCA)
● Probably more…

What is presence?

● Problem: How do you scale presence?
FreeSWITCH presence choked after ~800 SIP Users w/ 4 line keys

● Solution: Kamailio!!! But how? IDK - let’s just build it!
Several weeks later, the nsq module was born....
○ https://kamailio.org/docs/modules/devel/modules/nsq
○ https://nsq.io

question: Why Kamailio Presence + JSON?
 answer: scaling!

Back in 2016…

https://kamailio.org/docs/modules/devel/modules/nsq
https://nsq.io

- already had an nsq cluster
- already had event callbacks hooked to FreeSWITCH ESL publishing to our

nsq cluster
- influenced by 2600hz’s kazoo module

What is nsq?

Why an nsq module?

lmgtfy…

Before and After NSQ

Using only FreeSWITCH for presence

Using FreeSWITCH & Kamailio with NSQ for presence

- after sometime, we wanted more extensibility and less of a “blackbox” module
- moved `json` transformations out of nsq module and into the json module

- extended json module API
- created new module pua_json

- extended the presence module API
- shifted nsq module to just a message consumer

- leveraged nsq, json, pua_json, presence modules to handle presence
- now it’s possible to use several other module to publish presence

- evapi
- xhttp
- many more...

Not just NSQ anymore

https://www.kamailio.org/docs/modules/devel/modules/json
https://www.kamailio.org/docs/modules/devel/modules/pua_json

Not just NSQ anymore
Before and After

Before: the “blackbox” that was nsq After: updates from evapi, xhttp, nsq, and many more...

Scaling SUBSCRIBEs: skip the auth
- “edge” proxy to remove overhead of tls/tcp
- dispatcher module to distribute traffic
- fault-tolerance: any node can fail/be taken out and

cluster will be operational
- dmq_usrloc: share user location data
- check registrations data on SUBSCRIBE instead of

performing authentication

Scaling with NSQ
● sip-proxy

○ multi-homed SIP load-balancer with dispatcher
○ converts SIP TCP/TLS to UDP
○ server-side NAT handling
○ distributes active watchers to cluster of presence servers

● sip-presence
○ handle_subscribe()
○ active watchers & presence data
○ nsq consumer

● freeswitch
○ handles all calling
○ custom go app binds to “call events” via FreeSWITCH ESL
○ sends presence NSQ messages to nsqd

SIP PROXY ROLE

SIP PRESENCE ROLE

FreeSWITCH ROLE

● presence_id=[user@domain]

examples… nsq module + go

more examples...xhttp module + curl

 YES! It scaled to around 300k active watchers but then…. DISK IO got in our way....

It works, but does it scale?

DISK IO?!?! WHY?
There was a limitation in the presence module where presence records could not run
in-memory mode. This meant reading/writing to a DB each time a presence update was sent
to kamailio.

IN-MEMORY MODE (5.4 release)
- support for in-memory mode was on my TODO list for a long time. Unfortunately,

many other things got prioritized ahead of it...

- Daniel to the rescue!!
- recent release of 5.4 include support for full in-memory mode
- http://kamailio.org/docs/modules/devel/modules/presence#presence.p.publ_cache

http://kamailio.org/docs/modules/devel/modules/presence#presence.p.publ_cache

Thank you!
Contact Info

Emmanuel Schmidbauer
eschmidbauer@gmail.com

https://blog.voipxswitch.com/

https://www.linkedin.com/in/eschmidbauer/

mailto:eschmidbauer@gmail.com
https://blog.voipxswitch.com/
https://www.linkedin.com/in/eschmidbauer/

