

High Availability For
Kamailio And RTPEngine

19 Years Kamailio Development Celebration - Sept. 2-3, 2020

Dr. Yufei Tao

Tao Communications Ltd.

Kamailio + RTPEngine
● Kamailio for SIP signalling
● RTPEngine for media
● Many use cases

– Proxies - relay across different network interfaces
– NAT traversal
– GW for conversions:

● SIP transport protocols
● codec transcoding
● encryption/decryption of SIP/media
● ...

Example “SBC” Setup

Kamailio

RTPEngine

“SBC”
Application

Server

Application
Server

Application
Server

External Internal

Relaying across
network interfaces

Routing/LB for
other servers

NAT traversal
for remote endpoints

High Availability
● 1. Reliable server

– Happy path is the easiest
– Edge cases take more effort to handle – e.g. consider

● Unsuccessful calls; missing call terminations ...
● memory leak in scripts – clear htable ...

● 2. Failover setup to allow services to continue in case of...
– Failures - application/server/host/network: software or hardware
– Maintenance – upgrade etc.

1. Reliable Servers
KISS Principle:

● To make the server more robust and easier to implement/debug/maintain/upgrade
● Many Kamailio modules to help you create services
● However you don’t have to

– use existing modules
– use ready-made DB tables

… if they’re an overkill for your needs

● Simple proxy can be kept simple
– Get the SIP headers right and send to the right place on the right socket
– May craft your own htables, e.g. per call info: $sht(MyDlg=>$ci::<key>)

● To store e.g. tags, call direction etc. to play media to a call leg ...

2. FO Setup Example

Kamailio-A Kamailio-B

VIP

Kamailio-A Kamailio-B

VIP

master

master

slave

Normal
operation

After FO

KDMQ Hot standby

Failover (FO)
● Keepalived is a popular choice

– Ability to monitor network
interface and application statuses

– Assigns VIPs to the default
master node

– When master node down, move
VIPs to slave

● Applications: listen on the VIPs

Enable nonlocal bind in sysctl’s conf file:

net.ipv4.ip_nonlocal_bind = 1

keepalived.conf – master node:

vrrp_script check_apps {
 script "/etc/keepalived/mychecks.sh"
 interval 1 # check every 1 second
}

vrrp_instance VI_SIP {
 state MASTER
 interface eth0
 virtual_router_id 51
 priority 100
 advert_int 1
 nopreempt
 virtual_ipaddress {
 <Your_VIP> dev eth0
 }
 track_script {
 check_apps
 }
 # Run script on state changes
 notify /etc/keepalived/keepalive-notify.sh
}

Kamailio Routing Configuration
● Stateful mode - Using TM Module

– Automatically handles transaction layer tasks e.g.
retransmissions, timeouts, sending local ACKs …

– Depended on by other useful modules you may need

● No support for replication of transactions
● But still possible to handle most FO scenarios

FO Outside Transaction

After call establishment
● Happens most often

– Call duration is long
– FO not inside transaction

Node A:
Handles INVITE-OK-ACK
Sets up routing for initial INVITE:
- Find correct destination
- [Set correct send socket]
- Record route

Node B:
Handles in-dlg transactions e.g.
BYE-OK
- Use loose_route()

FO Inside Transaction - Response
● OK to INVITE hits B

– Gap between 1xx and OK
can be many seconds

● Error response hits B

Node A:
Handles INVITE-1xx
Sets up routing for initial INVITE:
- Find correct destination
- [Set correct send socket]
- Record route

Node B:
Handles Response-ACK
- Response: handled using Via
headers (may need to force socket)
- ACK for OK: relayed using
loose_route()
- ACK for error response: different

FO Inside Transaction - CANCEL
● INVITE-1xx hits node A

● CANCEL-OK, 487-ACK hits node B

– May find destination for it same way as for
INVITE

– Or may use saved destination from
processing INVITE

Without FO: CANCEL relayed only when
relevant INVITE transaction exists
With FO: find destination and relay

request_route {
…

 if (is_method("CANCEL")) {
 if (t_check_trans() < 0) {

 route(MY_ROUTING);
 }

route(RELAY);
 }

…
}

RFC 3261 Section 9.1:
"The following procedures are used to
construct a CANCEL request. The Request-
URI, Call-ID, To, the numeric part of CSeq,
and From header fields in the CANCEL
request MUST be identical to those in the
request being cancelled, including tags".

FO – ACK to Error Response
With FO

route[WITHINDLG] {
…
if (is_method("ACK")) {

if (!t_check_trans()) {
Find or use saved destination
route(MY_ROUTING);

 }

Relay anyway
route(RELAY);

}
…

}

Difference in this ACK by node B compared to that
sent by node A (with no FO) ?

Usually
route[WITHINDLG] {

...
if (is_method("ACK")) {

if (t_check_trans()) {
no loose-route, but stateful ACK;
must be an ACK after a 487
or e.g. 404 from upstream server
route(RELAY);
exit;

} else {
ACK without matching transaction

 # ignore and discard
exit;

}
}
…

}
Extra via header from previous hop

Kamailio FO - Summary
● Replication

– htable: may be used to store call info
– DMQ: for replication so slave has all info it needs to take over when

master is down

● Summary
– For a simple Kamailio proxy it is possible to handle FO for most cases

● Most important case: established calls, call attempts

– A couple of seconds for VIPs to migrate

RTPEngine FO
● Hot standby RTPEngine – avoid loss of media
● FO more noticeable than for Kamailio
● Easier to handle from scripting point of view
● FO based on Redis keyspace notifications

– 1&1 Presentation at KW16 by Pawel Kuzak:

https://www.kamailio.org/events/2016-KamailioWorld/Day2/20-Pawel.Kuzak-High-
Quality-Telephony-Using-A-Fail-Safe-Media-Relay-Setup.pdf

– Sipwise doc:

https://github.com/sipwise/rtpengine/wiki/Redis-keyspace-notifications

RTPEngine FO – Hot Standby

Redis keyspace notification

Node A:
- write to db1
- subs to db2

Node B:
- write to db2
- subs to db1

VIP

RTPe-A RTPe-B

RTPe-A RTPe-B

master

master

slave

2

1

2

1 notifications

notifications

VIP

Summary
● It is possible to achieve reasonable HA using

Kamailio and RTPEngine
● There are different ways to combine them

– Experiment and find what’s best for your
requirements and environment

● There are more ways – share your ideas!

Dr. Yufei Tao
yufei.tao@gmail.com

mailto:yufei.tao@gmail.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

