Table of Contents

Kamailio SIP Server v5.0.x (stable): Pseudo-Variables

Introduction

The term “pseudo-variable” is used for special tokens that can be given as parameters to different script functions and they will be replaced with a value before the execution of the function.

The beginning of a “pseudo-variable” is marked by the character “$”. If you want to have the character “$” just double it “$$”.

There is a set of predefined pseudo-variables, which have the name composed from one or more characters, and special pseudo-variables that are references to dynamic fields (AVP and Headers).

Pseudo-Variables are implemented by various modules, most of them are provided by pv (if there is no special reference to a module, expect that the pseudo-variable is provided by pv module).

Pseudo-variables usage

Pseudo-variables can be used with many modules, among them:

The list of pseudo-variables

Predefined pseudo-variables are listed in alphabetical order.

$$ - Pseudo-variable marker

$$ - represents the character '$'

$_s(format) - Evaluate dynamic format

$_s(format) - returns the string after evaluating all pseudo-variables in format

    $var(x) = "sip:" + $rU + "@" + $fd;

    # is equivalent of:

    $var(x) = $_s(sip:$rU@$fd);

$ai - URI inP-Asserted-Identity header

$ai - reference to URI in request's P-Asserted-Identity header (see RFC 3325)

$adu - Auth Digest URI

$adu - URI from Authorization or Proxy-Authorization header. This URI is used when calculating the HTTP Digest Response.

$aa - Auth algorithm

$aa - algorithm from Authorization or Proxy-Authorization header.

$ar - Auth realm

$ar - realm from Authorization or Proxy-Authorization header

$au - Auth username user

$au - user part of username from Authorization or Proxy-Authorization header

$ad - Auth username domain

$ad - domain part of username from Authorization or Proxy-Authorization header

$aU - Auth whole username

$aU - whole username from Authorization or Proxy-Authorization header

$Au - Acc username and realm/domain

$Au - username for accounting purposes. It's a selective pseudo variable (inherited from acc module). It returns the auth username and realm ($au@$ar) if exists or From URI ($fu) otherwise.

$branch(name) - Branch attributes

$branch(name) - reference to attribute 'name' of a branch

This pseudo variable gives you access to the “additional branches” only, not to the “main branch”. E.g. if there are 3 clients registered for the same AoR, after lookup() you will have one contact in the “main branch” and two “additional branches”. Using $branch() you can access the additional branches, the main branch can be accessed using $ru and $du. (Note: In branch_routes there is no distinction between the main and the additional branches - the branch_route will be called once for each one of them.)

The 'name' can be:

The PV can take an index to access a specif branch: $(branch(name)[index])

Example:

$var(i)=0;
while($var(i)<$branch(count))
{
   xlog("$(branch(uri)[$var(i)])\n");
   $var(i) = $var(i) + 1;
}

Starting with 3.1.0, you can assign value per attribute. Index can be used to update a specific branch:

$(branch(attr)[index]) = value;

If index is missing, first branch is used. If index is -1 the last branch is used.

Assigning $null to uri attribute will drop the branch, for the rest of attributes will just set the value to null.

$(branch(uri)[2]) = "sip:test@kamailio.org;transport=sctp";

$br - Request's first branch

$br - reference to request's first branch

It is R/W variable, you can assign values to it directly in configuration file (will add a new branch).

$bR - Request's all branches

$bR - reference to request's all branches

$bf - Branch flags

$bf - reference to branch flags of branch 0 (RURI) - decimal output

It is R/W variable (you can assign values to it directly in configuration file)

$bF - Branch flags

$bF - reference to branch flags of branch 0 (RURI) - hexa output

It is R/W variable (you can assign values to it directly in configuration file)

$bs - Body size

$bs - body size

$ci - Call-Id

$ci - reference to body of call-id header

$cl - Content-Length

$cl - reference to body of content-length header

$cnt(pv) - Count number of pvs

$cnt(avp) - return the number of avps

xlog("$$avp(x) fount $cnt($avp(x)) times\n");

$conid - TCP Connection ID

$conid - The TCP connection ID of the connection the current message arrived on for TCP, TLS, WS, and WSS. Set to $null for SCTP and UDP.

$cs - CSeq

$cs - reference to the sequence number in the cseq header. The method in the CSeq header is identical to the request method, thus use $rm to get the method (works also for responses).

$ct - Contact header

$ct - reference to body of contact header

$cT - Content-Type

$cT - reference to body of content-type header

$dd - Domain of destination URI

$dd - reference to domain of destination uri (without port)

$di - Diversion header URI

$di - reference to Diversion header URI

$dip - Diversion "privacy" parameter

$dip - reference to Diversion header “privacy” parameter value

$dir - Diversion "reason" parameter

$dir - reference to Diversion header “reason” parameter value

$dic - Diversion "counter" parameter

$dic - reference to Diversion header “counter” parameter value

$dp - Port of destination URI

$dp - reference to port of destination uri

$dP - Transport protocol of destination URI

$dP - reference to transport protocol of destination uri

$ds - Destination set

$ds - reference to destination set

$du - Destination URI

$du - reference to destination uri

If loose_route() returns TRUE a destination uri is set according to the first Route header. $du is also set if lookup() function of 'registrar' module finds contact(s) behind NAT. You can set $du to any SIP URI.

 sip:kamailio.org
 sip:pbx123.kamailio.org;transport=udp
 sip:[2001:DB8::33:2]:5980;transport=tls

It is R/W variable (you can assign values to it directly in configuration file)

To reset $du:

$du = $null;

$fd - From URI domain

$fd - reference to domain in URI of 'From' header

$fn - From display name

$fn - reference to display name of 'From' header

$fs - Forced socket

$fs - reference to the forced socket for message sending (if any) in the form proto:ip:port

It is R/W variable (you can assign values to it directly in configuration file). Transport proto can be omitted when assigning value, in which case it is taken from destination URI of the message.

$ft - From tag

$ft - reference to tag parameter of 'From' header

$fti - Initial From tag

$fti - reference to tag parameter of 'From' header as it was in the initial request (e.g., initial INVITE).

The value From tag in the initial request can be in the To tag, if the request within the dialog is sent by the callee. This variable detect who sent the request within the dialog and returns the proper value that was in the From tag of the request initiating the dialog.

It is exported by rr module and has to be used after loose_route(). The append_fromtag parameter is required to be set to 1 in order to have this variable returning the right value.

$fu - From URI

$fu - reference to URI of 'From' header

It is R/W variable (you can assign values to it directly in configuration file)

Note that changing the From: header may break backwards compatibility with SIP 1.0 devices.

$fU - From URI username

$fU - reference to username in URI of 'From' header

It is R/W variable (you can assign values to it directly in configuration file)

Note that changing the From: header may break backwards compatibility with SIP 1.0 devices.

$mb - SIP message buffer

$mb - reference to SIP message buffer

$mf - Flags

$mf - reference to message/transaction flags set for current SIP request

It is R/W variable (you can assign values to it directly in configuration file)

$mF - Flags in hexadecimal

$mF -reference to message/transaction flags set for current SIP request in hexa-decimal

It is R/W variable (you can assign values to it directly in configuration file)

$mi - SIP message id

$mi - reference to SIP message id

$ml - SIP message length

$ml - reference to SIP message length

$mt - SIP Message Type

$mt - returns 1 if the sip message is a request, returns 2 if the sip message is a reply

$od - Domain original R-URI

$od - reference to domain in request's original R-URI

$op - Port in original R-URI

$op - reference to port of original R-URI

$oP - Protocol of original R-URI

$oP - reference to transport protocol of original R-URI

$ou - Original R-URI

$ou - reference to request's original URI

$oU - Username in original R-URI

$oU - reference to username in request's original URI

$pd - Domain in P-Preferred-Identity header URI

$pd - reference to domain in request's P-Preferred-Identity header URI (see RFC 3325)

$pn - Display Name in P-Preferred-Identity header

$pn - reference to Display Name in request's P-Preferred-Identity header (see RFC 3325)

$pp - Process id

$pp - reference to process id (pid)

$pr - Protocol of received message

$pr or $proto - protocol of received message (udp, tcp, tls, sctp, ws, wss)

$pU - User in P-Preferred-Identity header URI

$pU - reference to user in request's P-Preferred-Identity header URI (see RFC 3325)

$pu - URI in P-Preferred-Identity header

$pu - reference to URI in request's P-Preferred-Identity header (see RFC 3325)

$rb - Body of request/reply

$rb - reference to message body

$rc - Returned code

$rc - reference to returned code by last invoked function

$retcode - same as $rc

$rd - Domain in R-URI

$rd - reference to domain in request's URI (without port) or to the Namespace Specific String of a URN (see RFC 2141)

It is R/W variable (you can assign values to it directly in configuration file)

$rdir(key) - Request Direction

$rdir(key) - get the direction of the request within dialog.

The direction is 'downstream' if sent by the caller and 'upstream' if sent by callee.

The key can be:

Example:

if($rdir(name)=="upstream") {
  xlog("request was sent by callee\n");
}

The variable is exported by rr module and append_fromtag parameter must be enabled. The variable has to be used after loose_route() function.

$re - Remote-Party-ID header URI

$re - reference to Remote-Party-ID header URI

$rm - SIP method

$rm - reference to request's method. Works also for replies (by using the CSeq header)

$rmid - SIP Method ID

$rmid - returns internal integer representation of SIP method type

$route_uri - URI in first Route header

$route_uri - returns the string with URI field in the first Route header

$rp - Port in R-URI

$rp - reference to port of R-URI

It is R/W variable (you can assign values to it directly in configuration file)

$rP - Protocol of R-URI

$rP - reference to transport protocol of R-URI

$rr - SIP reply reason phrase

$rr - reference to reply's reason phrase (the text after reply code)

$rs - SIP reply code

$rs - reference to reply's status (status-code, response-code, reply-code)

$rt - Refer-to URI

$rt - reference to URI of refer-to header

$ru - Request URI

$ru - reference to request's URI (address in the first line of a SIP request)

It is R/W variable (you can assign values to it directly in configuration file)

$rU - Username in R-URI

$rU - reference to username in request's URI or to the Namespace Identifier of a URN (see RFC 2141)

It is R/W variable (you can assign values to it directly in configuration file)

$ruid - Record internal Unique ID

$ruid - the Record internal Unique ID for the location record selected by calling registrar:lookup()

$rz - URI Scheme of R-URI

$rz - returns R-URI scheme, possible values: sip, sips, tel, tels and urn, R-URI scheme parsing error should be reflected by value: none

$Ri - Received IP address

$Ri - reference to IP address of the interface where the request has been received

$Rp - Received port

$Rp - reference to the port where the message was received

$sbranch(attr) - Static Branch

$sbranch(attr) - class of variables allowing to manage the values of attributes for static branch. The static branch is internal structure that is used by the functions sbranch_push_ruri() and sbranch_append() from pv module, enabling more flexibility in updating the R-URI (first) branch attributes as well as extra branches (e.g., for parallel forking).

The attr can be any of the supported values for $branch(attr) class of variables – see above for proper details.

Example of usage:

sbranch_reset();
$sbranch(uri) = "sip:127.0.0.1:5080";
$sbranch(dst_uri) =  "sip:127.0.0.1:5090";
$sbranch(path) =  "sip:127.0.0.1:5090, sip:127.0.0.1:5094";
$sbranch(send_socket) =  "udp:127.0.0.1:5060";
sbranch_set_ruri();

$sf - Script flags

$sf - reference to script flags - decimal output

$sF - Script flags

$sF - reference to script flags - hexa output

$si - Source IP address

$si - reference to IP source address of the message

$sp - Source port

$sp - reference to the source port of the message

$stat(name) - Statistics

$stat(name) - return the value of statistic item specified by 'name'

$su - Source address as URI

$su - returns the representation of source address (ip, port, proto) as SIP URI. If the proto is UDP, then it is not added (being the default transport protocol).

Its value looks like:

"sip:ip:port" -- if proto is UDP
"sip:ip:port;transport=proto"  -- if proto is not UDP

Note that WS and WSS are both represented by transport=ws, conforming with the IETF RFC for SIP over WebSocket.

$sut - Source address as full URI

$sut - returns the representation of source address (ip, port, proto) as full SIP URI. The proto UDP is added also as transport parameter.

Its value looks like:

"sip:ip:port;transport=proto"

$td - To URI Domain

$td - reference to domain in URI of 'To' header

$tn - To display name

$tn - reference to display name of 'To' header

$tt - To tag

$tt - reference to tag parameter of 'To' header

$tti - Initial To tag

$tti - reference to tag parameter of 'To' header as it was in the SIP response to the initial request (e.g., 200ok to the initial INVITE).

The value To tag in the initial transaction can be in the From tag, if the request within the dialog is sent by the callee. This variable detect who sent the request within the dialog and returns the proper value that was in the To tag of the transaction initiating the dialog.

It is exported by rr module and has to be used after loose_route(). The append_fromtag parameter is required to be set to 1 in order to have this variable returning the right value.

$tu - To URI

$tu - reference to URI of 'To' header

$tU - To URI Username

$tU - reference to username in URI of 'To' header

$Tb - Startup timestamp

$Tb - reference to unix timestamp of the time at which kamailio was started (boot time)

$Tf - String formatted time - cached

$Tf - reference string formatted time

Note: the system time is retrieved only once for each processed SIP message. Subsequent calls of $Tf for same SIP message will return same value.

$TF - String formatted time - current

$TF - reference string formatted time

Note: the system time is computed for each call of $TF. Subsequent calls of $TF for same SIP message may return different values.

$Ts - Unix time stamp - cached

$Ts - reference to unix time stamp

Note: the system time is retrieved only once for each processed SIP message. Subsequent calls of $Ts for same SIP message will return same value.

$TS - Unix time stamp - current

$TS - reference to unix time stamp

Note: the system time is computed for each call of $TS. Subsequent calls of $TS for same SIP message may return different values.

$ua - User agent header

$ua - reference to user agent header field

$avp(id) - AVPs

$avp(id) - the value of the AVP identified by 'id'.

$(avp(id)[N]) - represents the value of N-th AVP identified by 'id'.

The 'id' can be:

$(avp(id)[0]) can be written in shorter form as $avp(id) and $avp(s:name) as $avp(name).

AVPs are special variables that are attached to SIP transactions. It is a list of pairs (name,value). Before the transaction is created, the AVP list is attached to SIP request. Note that the AVP list works like a stack, last added value is retrieved first, and there can be many values for same AVP name, an assignment to the same AVP name does not overwrite old value, it will add the new value in the list.

To delete the first AVP with name 'id' you have to assign to it '$null':

$avp(id) = $null;

To delete all the AVP with name 'id' you have to assign $null to the index '*':

$(avp(id)[*]) = $null;

To overwrite the value of the AVP with name 'id' you have to assign the new value to the index '*':

$(avp(id)[*]) = newvalue;

The value of an AVP can be integer or string. To assign a value as string, it has to be enclosed in double quotes. To assign the value as integer, it has to be a valid number given without quotes.

Example of usage:

$avp(x) = 1;  # assign of integer value
$avp(x) = 2;
$avp(y) = "abc"; # assign of string value
if($(avp(x)[1])==1) {
  ...
}
$(avp(x)[1]) = $null;

It is R/W variable (you can assign values to it directly in configuration file).

$expires(key) - Expires Values

Return the min and max of expires value for current SIP message. Contact headers are checked with higher priority, if no expires parameter there, then Expires header is used

If none is found, $null is returned.

Possible 'key' values:

When there is only one expires value, then min and max return the same.

Example of usage:

if($expires(max)!=$null) {
    xlog("max expires value is: $expires(max)\n");
}

$xavp(id) - XAVPs

xavp - extended AVP's - are structures that can store multiple values. They work like a stack, much like AVPs, and are attached to SIP transactions. Each xavp has a name and can contain multiple named values, the structure name and the value name are separated by => like $xavp(root=>branch) where “root” is the name of the structure and branch is a named value. To assign a value use

$xavp(root=>branch)="value";

Like avps, xavp act like a stack. To refer to an existing value, use an index. The newest xavp has index zero [0].

$xavp(root[0]=>newbranch)=12;

If you assign a value without an index, a new xavp is allocated and the old one is pushed up the stack, becoming index [1]. Old index [1] becomes [2] etc.

$xavp(example=>name)="one";
#create new
$xavp(example=>name)="two";
#add extra value to "two"
$xavp(example[0]=>value)="John";
#add value to first variable - "one"
$xavp(example[1]=>value)="Anna";

Another example:

# Create new xavp
$xavp(sf=>uri)="sip:10.10.10.10";
 
#assign values
$xavp(sf[0]=>fr_timer)=10;
$xavp(sf[0]=>fr_inv_timer)=15;
$xavp(sf[0]=>headers)="X-CustomerID: 1234\r\n";
 
#create new xavp, moving previous one to sf[1]
$xavp(sf=>uri)="sip:10.10.10.11";
$xavp(sf[0]=>fr_timer)=20;
$xavp(sf[0]=>fr_inv_timer)=35;
 
#Create a third xavp
$xavp(sf=>uri)="sip:10.10.10.12";
$xavp(sf[0]=>fr_timer)=10;
$xavp(sf[0]=>fr_inv_timer)=15;
$xavp(sf[0]=>headers)="X-CustomerID: pw45\r\n";

xavps are read and write variables. You can create multilevel xavps, as xavps may contain xavps.

$hdr(name) - Headers

$hdr(name) - represents the body of first header identified by 'name'

$(hdr(name)[N]) - represents the body of the N-th header identified by 'name'.

If [N] is omitted then the body of the first header is printed. The first header is got when N=0, for the second N=1, a.s.o. In case of a comma-separated multi-body headers, it returns all the bodies, comma-separated. To print the last header of that type, use -1, or other negative values to count from the end. No white spaces are allowed inside the specifier (before }, before or after {, [, ] symbols). When N='*', all headers of that type are printed.

The module should identify compact header names. It is recommended to use dedicated specifiers for headers (e.g., $ua for user agent header), if they are available – they are faster.

Example of usage:

if($hdr(From)=~"kamailio\.org") {
...
}

It is read-only variable. You can remove or add headers using functions from textops module.

$var(name) - Private memory variables (zero)

$var(name) - refers to variables that can be used in configuration script, having integer or string value. This kind of variables are faster than AVPs, being referenced directly to memory location.

Example of usage:

$var(a) = 2; #-- sets the value of variable 'a' to integer '2'
$var(a) = "2"; #-- sets the value of variable 'a' to string '2'
$var(a) = "sip:" + $au + "@" + $fd; #-- compose a value from authentication username and From URI domain
$var(a) = 3 + (7&(~2));
 
if( $var(a) & 4 ) {
  xlog("var a has third bit set\n");
}

Note: Setting a variable to $null is actually initializing the value to integer '0'. This type of script variables doesn't have $null value.

$var(x) = $null;
 
if($var(x)==0) { # this is true
  ...
}

Note: A script variable persists over the Kamailio process in which it was initialized, so be sure of giving it a new value before reading it or you'll get the value asigned in any other previous message processed by the same Kamailio process (pid).

It is R/W variable (you can assign values to it directly in configuration file)

pv module can be used to initialize the script variables.

$vz(name) - Private memory variables (zero)

Same as $var(name) – added to pair with $vn(name).

$vn(name) - Private memory variables (null)

Similar to $var(name) and able to hold $null (which is the default value). The value is kept in private memory (pkg) and it is persistent across SIP message processing, within the space of each Kamailio process.

Example of usage:

$vn(x) = 1;
$vn(x) = "abc";
$vn(x) = $null;
 
if($vn(x) == $null) { ... }

$shv(name) - Shared memory variables

$shv(name) - it is a class of pseudo-variables stored in shared memory. The value of $shv(name) is visible across all Kamailio processes. Each “shv” has single value and it is initialised to integer 0. You can use “shvset” parameter of pv module to initialize the shared variable. The module exports a set of MI functions to get/set the value of shared variables.

Example - shv(name) pseudo-variable usage:

...
modparam("pv", "shvset", "debug=i:1")
...
if ($shv(debug) == 1) {
	xlog("request: $rm from $fu to $ru\n");
}
...

It is R/W variable (you can assign values to it directly in configuration file)

$time(name) - Broken-down time

$time(name) - the PV provides access to broken-down time attributes in the local timezone.

The 'name' can be:

Example - time(name) pseudo-variable usage:

...
if ($time(year) == 2008) {
    xlog("request: $rm from $fu to $ru in year 2008\n");
}
...

$utime(name) - Broken-down time

$utime(name) - the PV provides access to broken-down time attributes in UTC.

See $time(name) above for the possible attributes

$timef(format) - Strftime Formatted Time

$timef(format) - return current time as formatted by strftime 'format'. See 'man strftime' to see the available time attribute specifiers.

Example:

xlog("Today is $timef(%m/%d/%y)\n");

$utimef(format) - Strftime Formatted UTC Time

$utimef(format) - return current time in UTC as formatted by strftime 'format'. See 'man strftime' to see the available time attribute specifiers.

Example:

xlog("The time is $utimef(%m/%d/%y %H:%M:%S)\n");

$sel(name) - Selects

$sel(name) - return the value of select specified by name. select refers a class of config variables introduced by SER 2.0, allowing to select and return parts of sip messages and not only.

List of available selects:

Example:

if($sel(via[1].host)=="10.10.10.10")
{
  ...
}

Send Address Attributes

$sndfrom(name)

$snd(name) - return attributes of the address from where the request is going to be sent (local socket).

$sndfrom(name) - return attributes of the address from where the request is going to be sent (local socket, same as $snd(name)).

The name can have same values as for $sndto(…).

$sndto(name)

$sndto(name) - return attributes of the address to where the request is going to be sent (remote socket).

They are available in onsend_route. The name can be:

Example:

onsend_route {
  if($snd(ip)=="10.10.10.10")
  {
    ...
  }
}

Benchmark module Pseudo-Variables

$BM_time_diff

$BM_time_diff - the time difference elapsed between calls of bm_start_timer(name) and bm_log_timer(name). The value is 0 if no bm_log_timer() was called.

Dialog module Pseudo-Variables

$dlg(attr)

Return the attribute of the current processed dialog.

It is R/O variable.

The 'attr' can be:

$dlg_ctx(attr)

Return the attribute of the context for current processed dialog.

Some of the attributes are R/W variables.

The 'attr' can be:

$dlg_var(key)

Store and retrieve custom variable for current processed dialog.

It is R/W variable.

The 'key' can be any string.

Erlang module Pseudo-Variables

Erlang pseudo-variable attributes

* type - get variable type. Possible types are: atom, integer, list, string, tuple, pid and ref.

* length - get length of list or tuple.

* format - prints a term, in clear text. It tries to resemble the term printing in the Erlang shell.

$erl_atom(name)

$erl_atom(name) pseudo variable allows create analog to Erlang atom data type. Erlang atom is a literal, a constant with name. Formatted output pseudo variable atom could be enclosed in single quotes (') if it does not begin with a lower-case letter or if it contains other characters than alphanumeric characters, underscore (_), or @.

Example:

$erl_atom(A) = "node@host.tld";
 
xlogl("L_DEBUG","$$erl_atom(A): $erl_atom(A=>format)\n");

$erl_list(name)

Compound data type with a variable number of terms. Formally, a list is either the empty list [] or consists of one or more elements.

Example:

$erl_atom(E) = "example";
$erl_list(L) = "list";
$erl_list(L) = "of";
$erl_list(L) = $erl_atom(E);
 
xlogl("L_DEBUG","length(L): $erl_list(L=>length), format(L): $erl_list(L=>format)\n");
 
# empty list
$erl_tuple(E[*]) = $null;

$erl_tuple(name)

From the Erlang point of view the tuple compound data type with a fixed number of terms. The module implementation of tuple has the same behavior as the list.

Example:

$erl_atom(e) = "error";
 
$erl_tuple(T) = "badrpc";
$erl_tuple(T) = $erl_atom(e);
 
xlogl("L_DEBUG","length(T): $erl_tuple(T=>length), format(T): $erl_tuple(T=>format)\n");

$erl_pid(name)

Holds Eralng process identifier. Provides access to Erlang PID value and could be used in send message.

$erl_ref(name)

Holds Erlang reference. Provides access to reference value and could be used in send message.

$erl_xbuff(name)

Generic pseudo variable to acts as other pseudo variables exported from Erlang module.

HTable module Pseudo-Variables

$sht(htable=>key)

Access hash table entries.

It is R/W variable, you can assign values to it directly in configuration file. Hash table entry can be deleted by assigning value $null to it.

The “htname” must be a hash table name defined via “htable” parameter.

The “key” can be:

...
modparam("htable", "htable", "a=>size=4;")
...
$sht(a=>$au) = 1;
$sht(a=>$ru) = $fu;
...

$shtex(htable=>key)

Access hash table entry expire value. Value represents the seconds until the htable entry will expire and be deleted from htable.

It is R/W variable, you can assign values to it directly in configuration file.

The “htname” must be a hash table name defined via “htable” parameter and have auto-expire greater than 0.

The “key” can be:

...
modparam("htable", "htable", "a=>size=4;autoexpire=120;")
...
$sht(a=>$au) = 1;
$shtex(a=>$au) = 10;
...

$shtcn(htable=>exp)

Count items matching the name by regexp.

The “htname” must be a hash table name defined via “htable” parameter.

The exp can be:

The exp can contain pseudo-variables.

...
modparam("htable", "htable", "a=>size=4;")
...
$sht(a=>abc) = 1;
$shtex(a=>ade) = 10;
xlog("$shtcn(a=>a.*)");
...

$shtcv(htable=>exp)

Count items matching the value by regexp.

The “htname” must be a hash table name defined via “htable” parameter.

The exp must follow same rules as for $shtcn(…).

...
modparam("htable", "htable", "a=>size=4;")
...
$sht(a=>abc) = "xyz";
$shtex(a=>ade) = "xwt";
xlog("$shtcv(a=>x.*)");
...

$shtinc(htable=>key)

Atomic increment of the value for the hash table item.

...
modparam("htable", "htable", "a=>size=4;")
...
$sht(a=>$au) = 1;
xlog("==== $shtinc(a=>$au)\n");
...

$shtdec(htable=>key)

Atomic decrement of the value for the hash table item.

...
modparam("htable", "htable", "a=>size=4;")
...
$sht(a=>$au) = 1;
xlog("==== $shtdec(a=>$au)\n");
...

$shtitkey(iname)

The key at the current position in the iterator.

$shtitval(iname)

The value at the current position in the iterator.

Example:

    sht_iterator_start("i1", "h1");
    while(sht_iterator_next("i1")) {
        xlog("h1[$shtitkey(i1)] is: $shtitval(i1)\n");
    }
    sht_iterator_end("i1");

$shtrecord(id)

Get the key or the value of expired item inside the event_route[htable:expired:_table_name_].

The id can be:

Example:

event_route[htable:expired:h1] {
  xlog("expired item ($shtrecord(key),$shtrecord(value))\n");
}

Memcached module Pseudo-Variables

$mct(key)

Access hash table entries stored in the memcached server.

It is R/W variable, you can assign values to it directly in configuration file.

The “key” can be:

When assigning values, the default expiry will be used.

...
$mct($au) = 1;
$mct($ru) = $fu;
$mct(test) = 1;
xlog("stored value is $mct(test)");
$mct(test) = null; # delete it
xlog("stored value is $mct(test)"); # will return <null>
...

$mct(key=>expiry)

Using this alternative format, the default expiry may be overidden by including a custom value at time of assignment.

...
$mct(test=>30) = 1; # set expire time to 30 seconds
xlog("stored value is $mct(test)");
# sleep 30 seconds
xlog("stored value is $mct(test)"); # will return <null>
...

$mcinc(key)

Do a atomic increment operation on the value stored in memcached. You need to add a value previously.

It is R/W variable, you can assign values to it directly in configuration file.

The “key” can be:

...
$mct(cnt) = 1;
$mcinc(cnt) = 2; # increment by 2
xlog("counter is now $mct(cnt)");
...

$mcdec(key)

Do a atomic decrement operation on the value stored in memcached. You need to add a value previously.

It is R/W variable, you can assign values to it directly in configuration file.

The “key” can be:

...
$mct(cnt) = 10;
$mcdec(cnt) = 2; # decrement by 2
xlog("counter is now $mct(cnt)");
...

XMLOPS Pseudo-Variables

$xml(name=>spec)

Example:

$xml(x=>doc) = '<?xml version="1.0" encoding="UTF-8"?><a><b>test</b></a>';
xlog("content of node b: $xml(x=>xpath:/a/b/text())\n");
$xml(x=>xpath:/a/b) = "1234";

TMX module Pseudo-Variables

$T_branch_idx

$T_reply_ruid

$T_reply_code

$T_req(pv)

route {
  t_on_reply("1");
  t_relay();
}

onreply_route[1] {
  xlog("Request SRCIP:PORT = $T_req($si):$T_req($sp)\n");
}

$T_rpl(pv)

route {
  t_on_failure("1");
  t_relay();
}

failure_route[1] {
  xlog("Reply SRCIP:PORT = $T_rpl($si):$T_rpl($sp)\n");
}

$T_inv(pv)

route {
  if(is_method("CANCEL"))
  {
     if($T_inv($mf) & 1 )
     {
        # first flag is set in the INVITE transaction
     }
  }
}

$T(name)

The name can be:

Note: the pair (id_index,id_label) uniquely identifies a transaction.

$T_branch(name)

The name can be:

UAC module Pseudo-Variables

$uac_req(key)

The key can be:

$uac_req(method)="OPTIONS";
$uac_req(ruri)="sip:kamailio.org";
$uac_req(furi)="sip:kamailio.org";
$uac_req(turi)="sip:kamailio.org";
$uac_req(evroute) = 1;
uac_req_send();
...
event_route[uac:reply] {
  xlog("request sent to $uac_req(ruri) completed with code: $uac_req(evcode)\n");
}

Nathelper module Pseudo-Variables

$rr_count

$rr_top_count

MQueue module Pseudo-Variables

$mqk(q)

$mqv(q)

...
mq_add("myq", "$rU", "call from $fU at $Tf");
...
while(mq_fetch("myq"))
{
   xlog("$mqk(myq) - $mqv(myq)\n");
}
...

TimeVal

$TV(name)

Seconds and microseconds taken from struct timeval.

Next hop address

$nh(key)

Return attributes of next hop for the SIP request. Address is taken from dst_uri, if set, if not from new r-uri or original r-uri.

GeoIP module Pseudo-Variables

$gip(pvc=>key)

Variables exported by GeoIP module, returning geo-location attributes. The attributes are populated upon calling function geoip_match(ipaddr, pvc).

pvc (container id) is second parameter of geoip_match(..) and key can be:

You can call several time geoip_match(ipaddr, pvc) with different ip address and containers in your config, to compare, for example, attributes of source and destination of a call.

geoip_match("$si", "src");
geoip_match("$nh(d)", "dst");
 
if($gip(src=>cc)==$gip(dst=>cc))
{
    # source and destination from same country
}

TLS module Pseudo-Variables

$tls_version

The TLS/SSL version which is used on the TLS connection from which the message was received. String type.

$tls_description

The TLS/SSL description of the TLS connection from which the message was received. String type.

$tls_cipher_info

The TLS/SSL cipher which is used on the TLS connection from which the message was received. String type.

$tls_cipher_bits

The number of cipher bits which are used on the TLS connection from which the message was received. String and Integer type.

$tls_peer_version

The version of the certificate. String type.

$tls_my_version

The version of the certificate. String type.

$tls_peer_serial

The serial number of the certificate. String and Integer type.

$tls_my_serial

The serial number of the certificate. String and Integer type.

$tls_peer_subject

ASCII dump of the fields in the subject section of the certificate. String type. Example:

  /C=AT/ST=Vienna/L=Vienna/O=enum.at/CN=enum.at

$tls_peer_issuer

ASCII dump of the fields in the issuer section of the certificate. String type.

$tls_my_subject

ASCII dump of the fields in the subject section of the certificate. String type.

$tls_my_issuer

ASCII dump of the fields in the issuer section of the certificate. String type.

$tls_peer_subject_cn

commonName in the subject section of the certificate. String type.

$tls_peer_issuer_cn

commonName in the issuer section of the certificate. String type.

$tls_my_subject_cn

commonName in the subject section of the certificate. String type.

$tls_my_issuer_cn

commonName in the issuer section of the certificate. String type.

$tls_peer_subject_locality

localityName in the subject section of the certificate. String type.

$tls_peer_issuer_locality

localityName in the issuer section of the certificate. String type.

$tls_my_subject_locality

localityName in the subject section of the certificate. String type.

$tls_my_issuer_locality

localityName in the issuer section of the certificate. String type.

$tls_peer_subject_country

countryName in the subject section of the certificate. String type.

$tls_peer_issuer_country

countryName in the issuer section of the certificate. String type.

$tls_my_subject_country

countryName in the subject section of the certificate. String type.

$tls_my_issuer_country

countryName in the issuer section of the certificate. String type.

$tls_peer_subject_state

stateOrProvinceName in the subject section of the certificate. String type.

$tls_peer_issuer_state

stateOrProvinceName in the issuer section of the certificate. String type.

$tls_my_subject_state

stateOrProvinceName in the subject section of the certificate. String type.

$tls_my_issuer_state

stateOrProvinceName in the issuer section of the certificate. String type.

$tls_peer_subject_organization

organizationName in the subject section of the certificate. String type.

$tls_peer_issuer_organization

organizationName in the issuer section of the certificate. String type.

$tls_my_subject_organization

organizationName in the subject section of the certificate. String type.

$tls_my_issuer_organization

organizationName in the issuer section of the certificate. String type.

$tls_peer_subject_unit

organizationalUnitName in the subject section of the certificate. String type.

$tls_peer_issuer_unit

organizationalUnitName in the issuer section of the certificate. String type.

$tls_my_subject_unit

organizationalUnitName in the subject section of the certificate. String type.

$tls_my_issuer_unit

organizationalUnitName in the issuer section of the certificate. String type.

$tls_peer_san_email

email address in the “subject alternative name” extension. String type.

$tls_my_san_email

email address in the “subject alternative name” extension. String type.

$tls_peer_san_hostname

hostname (DNS) in the “subject alternative name” extension. String type.

$tls_my_san_hostname

hostname (DNS) in the “subject alternative name” extension. String type.

$tls_peer_san_uri

URI in the “subject alternative name” extension. String type.

$tls_my_san_uri

URI in the “subject alternative name” extension. String type.

$tls_peer_san_ip

ip address in the “subject alternative name” extension. String type.

$tls_my_san_ip

ip address in the “subject alternative name” extension. String type.

$tls_peer_verified

Returns 1 if the peer's certificate was successfully verified. Otherwise it returns 0. String and Integer type.

$tls_peer_revoked

Returns 1 if the peer's certificate was revoked. Otherwise it returns 0. String and Integer type.

$tls_peer_expired

Returns 1 if the peer's certificate is expired. Otherwise it returns 0. String and Integer type.

$tls_peer_selfsigned

Returns 1 if the peer's certificate is selfsigned. Otherwise it returns 0. String and Integer type.

$tls_peer_notBefore

Returns the notBefore validity date of the peer's certificate. String type.

$tls_peer_notAfter

Returns the notAfter validity date of the peer's certificate. String type.

$tls_peer_server_name

The SNI server name of the peer

SIP Message Attributes

$msg(attr)

Return attributes of SIP message:

XHTTP module Pseudo-Variables

$hu

MSRP Module Pseudo Variables

This class of pseudo-variables is exported by MSRP module and give access to attributes of MSRP frames.

$msrp(buf)

The entire content of MSRP frame - first line, headers, body and end-line.

$msrp(body)

The body of MSRP frame.

$msrp(code)

The code of MSRP replies.

$msrp(hdrs)

The headers in a MSRP frame.

$msrp(msgid)

The body of Message-Id header.

$msrp(method)

The method of a MSRP request.

$msrp(buflen)

The length of entire MSRP frame.

$msrp(sessid)

The session id for MSRP frame. It is taken from the first MSRP URI in To-Path header.

$msrp(reason)

The reason text in a MSRP reply.

$msrp(crthop)

The URI for current hop - it is the first URI in To-Path header.

$msrp(bodylen)

The length of the body in MSRP frame.

$msrp(transid)

The transaction ID from the first line of MSRP frame.

$msrp(prevhop)

The MSRP URI of the previous hop - the first address in From-Path header.

$msrp(nexthop)

The URI of the next hop - the second address in To-Path header.

$msrp(lasthop)

The last hop URI - the last address in To-Path header.

$msrp(srcaddr)

The address of the previous hop set as MSRP URI using received source IP and port.

$msrp(srcsock)

The local socket where the MSRP frame was received, set as **proto:ipaddr:port“.

$msrp(firsthop)

The URI of the first hop - the last address in From-Path header.

$msrp(prevhops)

The number of previous hops - it is the number of addresses in From-Path header.

$msrp(nexthops)

The number of next hops - it is the number of addresses in To-Path header minus 1 (the first address in To-Path is current hop).

$msrp(conid)

The internal integer id for TCP/TLS connection.

SIPT module Pseudo-Variables

$sipt(calling_party_number.presentation) / $sipt_presentation

Returns the value of the Address presentation restricted indicator contained in the Calling Party Number header of the IAM message if it exists. Returns -1 if there isn't a Calling Party Number header.

The following values can be returned:

Example:

if($sipt(calling_party_number.presentation) == 1)
{
        append_hf("Privacy: id\r\n");
        $fn = "Anonymous";
}

$sipt(calling_party_number.screening) / $sipt_screening

Returns the value of the Screening Indicator contained in the Calling Party Number header of the IAM message if it exists. Returns -1 if there isn't a Calling Party Number header.

Can return the following values:

Example:

# remove P-Asserted-Identity header if the screening isn't verified
# or network provided
$avp(s:screening) = $sipt(calling_party_number.screening);
if($avp(s:screening) != 1 && $avp(s:screening) != 3)
{
        remove_hf("P-Asserted-Id");
}

$sipt(hop_counter) / $sipt_hop_counter

Returns the value of the Hop Counter for the IAM message if it exists. Returns -1 if there isn't a hop counter.

Example:

# get the hop counter and update the Max-Forwards header if it exists
$avp(s:hop) = $sipt(hop_counter);
if($avp(s:hop) > 0)
{
        remove_hf("Max-Forwards");
        append_hf("Max-Forwards: $avp(s:hop)\r\n");
}

$sipt(calling_party_category) / $sipt(cpc) / $sipt_cpc

Returns the value of the Calling Party Category for the IAM message. Returns -1 if there is a parsing error.

$sipt(calling_party_number.nature_of_address) / $sipt.(calling_party_number.nai) / $sipt_calling_party_nai

Returns the value of the Nature of Address Indicator of the Calling Party for the IAM message. Returns -1 if there is a parsing error or if the Calling Party Number is not present.

Can return the following values:

Example:

# get the Calling Nai and add country code if national
if($sipt(calling_party_number.nai) == 3)
{
        $fU = "32" + "$fU";
}

$sipt(called_party_number.nature_of_address) / $sipt(called_party_number.nai) / $sipt_called_party_nai

Returns the value of the Nature of Address Indicator of the Called Party for the IAM message. Returns -1 if there is a parsing error.

Can return the following values:

Example:

# get the Called Nai and add country code if national
if($sipt(called_party_number.nai) == 3)
{
        $rU = "32" + "$rU";
}

$sipt(event_info)

Returns the value of the Event Info header of the CPG message. Returns -1 if there is a parsing error.

Can return the following values:

$sipt(backward_call_indicator.charge_indicator)

Returns the value of the charge indication of the backward call indicator header in the ACM or COT message. Returns -1 if there is a parsing error

Can return the following values:

$cfg(key) - Config File Attributes

Attributes related to configuration file.

The key can be:

Example:

send_reply("404", "Not found at line $cfg(line)");

$dns(pvid=>key) - DNS Query Result

This variable stores the DNS result details after a call of dns_query(hostname, pvid) function from ipops module.

The index can be an integer or a variable with integer value. First address has the index 0. If negative value, the returned address is counted from the end of the list, -1 being the last address. If no index is provided, then the first address is returned.

if(dns_query("test.com", "xyz"))
{
    xlog(" number of addresses: $dns(xyz=>count)\n");
    xlog(" ipv4 address found: $dns(xyz=>ipv4)\n");
    xlog(" ipv6 address found: $dns(xyz=>ipv6)\n");
    $var(i) = 0;
    while($var(i)&lt;$dns(xyz=>count)) {
        xlog(" #[$var(i)] type ($dns(xyz=>type[$var(i)]))"
             " addr [$dns(xyz=>addr[$var(i)])]\n");
        $var(i) = $var(i) + 1;
    }
}

$HN(key) - Hostname details

Give local hostname details (implemented by ipops module).

The key can be:

xlog("local hostanme is $HN(n)\n");

$RANDOM - Random number

Returns a random value from the [0 - 2^31) range.

(Part of the cfgutils module)

if (rand_event()) {
  $avp(i:10) = ($RANDOM / 16777216); # 2^24
  if ($avp(i:10) < 10) {
     $avp(i:10) = 10;
  }
  append_to_reply("Retry-After: $avp(i:10)\n");
  sl_send_reply("503", "Try later");
  exit;
};
# normal message processing follows

JSONRPC-S Variables

$jsonrpl(key) - JSONRPC Reply

This variable gives access to JSONRPC reply after executing jsonrpc_exec(…) in kamailio.cfg.

The key can be:

Presence Module Pseudo-Variables

$subs(key) - Subscription Attributes

This variable gives access to attributes of the current subscription. The variable has to be used after executing handle_subscription() in order to provide accurate values.

The key can be:

$C(xy) - Foreground and background colors

$C(xy) - reference to an escape sequence. “x” represents the foreground color and “y” represents the background color.

Colors could be:

Examples

A few examples of usage.

Example 1. Pseudo-variables usage

...
avp_aliases="uuid=I:50"
...
route {
...
    $avp(uuid)="caller_id";
    $avp(i:20)= $avp(uuid) + ": " + $fu;
    xdbg("$(C(bg))avp(i:20)$(C(xx)) [$avp(i:20)] $(C(br))cseq$(C(xx))=[$hdr(cseq)]\n");
...
}
...

Request-URI and Destination-URI parsing

Following are some examples how RURI and DURI are parsed, for SIP-URIs, tel-URIs and Service-URNs:

 === Request URI contains SIP URI ===
$ru = "sip:example.com"
$rz = "sip"
$rU = "<null>"
$rd = "example.com"
$rp = "5060"
$rP = "UDP"

=== Request URI contains SIP URI ===
$ru = "sips:john.q.public:hispw@example.com:6061;transport=tls;foo=bar"
  $rz = "sips"
  $rU = "john.q.public"
  $rd = "example.com"
  $rp = "6061"
  $rP = "tls"

=== Request URI contains service URN ===
$ru = "urn:service:sos.fire"
  $rz = "urn"
  $rU = "service"
  $rd = "sos.fire"
  $rp = "5060"
  $rP = "UDP"

=== Request URI contains tel: URI ===
$ru = "tel:+1-201-555-0123"
  $rz = "tel"
  $rU = "+1-201-555-0123"
  $rd = "<null>"
  $rp = "5060"
  $rP = "UDP"

=== Request URI contains tel: URI with phone-context ===
$ru = "tel:7042;phone-context=example.com"
  $rz = "tel"
  $rU = "7042"
  $rd = "<null>"
  $rp = "5060"
  $rP = "UDP"

=== Destination URI (must be a SIP(S) URI) ===
$du = "sip:example.com:6061;transport=tls;foo=bar"
  $dd = "example.com"
  $dp = "6061"
  $dP = "tls"